论文标题

大脑连通性的多种学习

Manifold learning for brain connectivity

论文作者

Renard, Félix, Heinrich, Christian, Bouthillon, Marine, Schenck, Maleka, Schneider, Francis, Kremer, Stéphane, Achard, Sophie

论文摘要

人脑连接组的研究旨在提取和分析与感兴趣的病理相关的相关特征。通常,这包括将脑连接组建模为图形,并将图指标作为特征进行建模。精细的大脑描述需要在节点级别上计算图指标。鉴于标准队列中患者的数量相对减少,因此此类数据分析问题属于高维度的低样本量框架。在这种情况下,我们的目标是提供一种具有灵活性的机器学习技术,使研究人员掌握了特征和协变量,允许可视化和探索,并洞悉数据和生物学现象。保留的方法是降低了多种学习方法的尺寸,这是一个(或几个)减少的变量由研究者选择的。提出的方法在两项研究中进行了说明,这是第一个针对昏迷患者的研究,第二种方法是针对年轻人与老年人的比较。该方法阐明了图指标和潜在的神经生物学现象。

Human brain connectome studies aim at extracting and analyzing relevant features associated to pathologies of interest. Usually this consists in modeling the brain connectome as a graph and in using graph metrics as features. A fine brain description requires graph metrics computation at the node level. Given the relatively reduced number of patients in standard cohorts, such data analysis problems fall in the high-dimension low sample size framework. In this context, our goal is to provide a machine learning technique that exhibits flexibility, gives the investigator grip on the features and covariates, allows visualization and exploration, and yields insight into the data and the biological phenomena at stake. The retained approach is dimension reduction in a manifold learning methodology, the originality lying in that one (or several) reduced variables be chosen by the investigator. The proposed method is illustrated on two studies, the first one addressing comatose patients, the second one addressing young versus elderly population comparison. The method sheds light on the graph metrics and underlying neurobiological phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源