论文标题
Galaxy合并使用贝叶斯深度学习模型$ - $ - $ $ $ a的主要合并分类器使用Illarteristng仿真数据
Galaxy Merger Rates up to z $\sim$ 3 using a Bayesian Deep Learning Model $-$ A Major-Merger classifier using IllustrisTNG Simulation data
论文作者
论文摘要
合并可能是银河系形成的主导过程,但关于其历史在宇宙时间上仍然存在争议。为了解决这个问题,我们使用深度学习卷积神经网络(CNN)在所有五个烛台(UDS,EGS,Goods-S,Goods-N,Cosmos)的所有五个烛台(UDS,EGS,Goods-S,Goods-N,Cosmos)中对主要合并进行了分类,并使用深度学习卷积神经网络(CNN)进行了培训,该赛车从Illustristristng Cosmological模拟中进行了模拟星系。所使用的深度学习体系结构是通过贝叶斯选择式过程在可能的超参数范围内客观地选择的。我们表明,从模拟分类合并时,我们的模型可以达到90%的精度,并且具有将合并分离为恒星质量与后合并后分离合并的附加功能。我们比较了关于烛台的机器学习分类,并与Kartaltepe等人的视觉合并分类进行了比较。 (2015年),并表明它们是广泛的一致性。我们通过证明我们的模型能够测量星系合并率,$ \ Mathcal {r} $,这与使用近对统计的烛台找到的结果一致,具有$ \ Mathcal {r}(z)= 0.02 \ pm 0.004 \ pm 0.004 \ times(1 +z)这是在z <3时测量的主要合并与结构测量的主要合并之间的第一个一般一致。
Merging is potentially the dominate process in galaxy formation, yet there is still debate about its history over cosmic time. To address this we classify major mergers and measure galaxy merger rates up to z $\sim$ 3 in all five CANDELS fields (UDS, EGS, GOODS-S, GOODS-N, COSMOS) using deep learning convolutional neural networks (CNNs) trained with simulated galaxies from the IllustrisTNG cosmological simulation. The deep learning architecture used is objectively selected by a Bayesian Optmization process over the range of possible hyperparameters. We show that our model can achieve 90% accuracy when classifying mergers from the simulation, and has the additional feature of separating mergers before the infall of stellar masses from post mergers. We compare our machine learning classifications on CANDELS galaxies and compare with visual merger classifications from Kartaltepe et al. (2015), and show that they are broadly consistent. We finish by demonstrating that our model is capable of measuring galaxy merger rates, $\mathcal{R}$, that are consistent with results found for CANDELS galaxies using close pairs statistics, with $\mathcal{R}(z) = 0.02 \pm 0.004 \times (1 +z) ^ {2.76 \pm 0.21}$. This is the first general agreement between major mergers measured using pairs and structure at z < 3.