论文标题
Homflypt绞线理论,弦拓扑和两类
HOMFLYPT Skein Theory, String Topology and 2-Categories
论文作者
论文摘要
我们表明,Homflypt类型的关系符合定向$ 3 $ - manifold $ m $的关系是由$ 2 $ groupoid从基本$ 2 $ groupoid定义的$ 2 $ groupoid引起的,该空间是$ m $ $ m $的。模块关系是由与字符串拓扑相关的同态定义的。它们从组的表示形式出现到一组模型对象上的自由模块中。基本$ 2 $ groupoid的构造是由奇异性分层定义的,并将Vassiliev和skein理论相关联。讨论了几种明确的属性,并得出了对绞线模块的某些影响。
We show that relations in Homflypt type skein theory of an oriented $3$-manifold $M$ are induced from a $2$-groupoid defined from the fundamental $2$-groupoid of a space of singular links in $M$. The module relations are defined by homomorphisms related to string topology. They appear from a representation of the groupoid into free modules on a set of model objects. The construction on the fundamental $2$-groupoid is defined by the singularity stratification and relates Vassiliev and skein theory. Several explicit properties are discussed, and some implications for skein modules are derived.