论文标题

由环构建的代数群

Algebraic Groups Constructed From Rings with Involution

论文作者

Sheydvasser, Arseniy

论文摘要

我们定义了一类由配备有涉及的环构建的组。我们表明,在适当的条件下,这些组是代数或算术,包括特殊情况下的蜂鸣器4空间的定向式等轴测组,$ sl(2,r)$,用于任何交换ring $ r $,各种符号和正交组和正交组,以及重要的Arithmetic子组,以及$ so so^+(4,4,1)$(4,1,1)$。我们调查了此类组何时是同构和共轭物,并将其与确定何时双曲线$ 4 $ -Orbifolds的问题联系起来。

We define a class of groups constructed from rings equipped with an involution. We show that under suitable conditions, these groups are either algebraic or arithmetic, including as special cases the orientation-preserving isometry group of hyperbolic 4-space, $SL(2,R)$ for any commutative ring $R$, various symplectic and orthogonal groups, and an important class of arithmetic subgroups of $SO^+(4,1)$. We investigate when such groups are isomorphic and conjugate, and relate this to problem of determining when hyperbolic $4$-orbifolds are homotopic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源