论文标题
销量差异私人协作入侵检测系统
Differentially Private Collaborative Intrusion Detection Systems For VANETs
论文作者
论文摘要
车辆临时网络(VANET)是现代运输系统中的一种促成技术,可提供安全性和有价值的信息,但却容易受到从被动窃听到主动干扰的许多攻击。入侵检测系统(IDS)是重要的设备,可以通过检测恶意行为来减轻威胁。此外,货车中车辆之间的合作可以通过传达节点之间的经验来提高检测准确性。为此,分布式机器学习是用于设计货物盒上可扩展和可实现的协作检测算法的合适框架。当节点交换数据中的数据交换数据时,协作学习的一个基本障碍是隐私问题。恶意节点可以通过从观察到的数据中推断出其他节点的敏感信息。在本文中,我们提出了一个基于机器学习的隐私性协作ID(PML-CID)的Vanets。所提出的算法采用乘数(ADMM)的交替方向方法来实现一类经验风险最小化(ERM)问题,并训练分类器以检测货物中的侵入率。我们使用差异隐私来捕获PML-CID的隐私符号,并提出一种双重变量扰动的方法,以提供动态差异隐私。我们分析了理论绩效,并描述了PML-CID的安全性和隐私之间的基本权衡。我们还使用NSL-KDD数据集进行了数值实验,以证实检测准确性,安全性权威权衡和设计的结果。
Vehicular ad hoc network (VANET) is an enabling technology in modern transportation systems for providing safety and valuable information, and yet vulnerable to a number of attacks from passive eavesdropping to active interfering. Intrusion detection systems (IDSs) are important devices that can mitigate the threats by detecting malicious behaviors. Furthermore, the collaborations among vehicles in VANETs can improve the detection accuracy by communicating their experiences between nodes. To this end, distributed machine learning is a suitable framework for the design of scalable and implementable collaborative detection algorithms over VANETs. One fundamental barrier to collaborative learning is the privacy concern as nodes exchange data among them. A malicious node can obtain sensitive information of other nodes by inferring from the observed data. In this paper, we propose a privacy-preserving machine-learning based collaborative IDS (PML-CIDS) for VANETs. The proposed algorithm employs the alternating direction method of multipliers (ADMM) to a class of empirical risk minimization (ERM) problems and trains a classifier to detect the intrusions in the VANETs. We use the differential privacy to capture the privacy notation of the PML-CIDS and propose a method of dual variable perturbation to provide dynamic differential privacy. We analyze theoretical performance and characterize the fundamental tradeoff between the security and privacy of the PML-CIDS. We also conduct numerical experiments using the NSL-KDD dataset to corroborate the results on the detection accuracy, security-privacy tradeoffs, and design.