论文标题

一项关于部署基于深度学习软件的挑战的综合研究

A Comprehensive Study on Challenges in Deploying Deep Learning Based Software

论文作者

Chen, Zhenpeng, Cao, Yanbin, Liu, Yuanqiang, Wang, Haoyu, Xie, Tao, Liu, Xuanzhe

论文摘要

深度学习(DL)变得越来越普遍,用于广泛的软件应用程序。这些软件应用程序,称为基于DL的软件(简称DL软件),将使用大型数据语料库训练的DL模型与基于DL框架(例如Tensorflow和Keras)编写的DL程序进行了训练。 DL程序编码所需的DL模型的网络结构以及使用培训数据训练模型的过程。为了帮助DL软件的开发人员应对DL提出的新挑战,已经致力于软件工程方面的巨大研究工作。现有研究的重点是开发DL软件,并广泛分析了DL程序中的故障。但是,尚未对DL软件的部署进行全面研究。为了填补这一知识差距,本文介绍了一项有关理解DL软件中挑战的全面研究。我们挖掘并分析了来自开发人员流行的问答网站Stack Overflow的3,023个相关帖子,并显示了开发人员中DL软件部署的日益普及和困难。我们通过手动检查769个采样帖子的手动检查,建立了开发人员在DL软件部署过程中遇到的特定挑战的分类法,并报告了对研究人员,开发人员和DL框架供应商的一系列可行含义。

Deep learning (DL) becomes increasingly pervasive, being used in a wide range of software applications. These software applications, named as DL based software (in short as DL software), integrate DL models trained using a large data corpus with DL programs written based on DL frameworks such as TensorFlow and Keras. A DL program encodes the network structure of a desirable DL model and the process by which the model is trained using the training data. To help developers of DL software meet the new challenges posed by DL, enormous research efforts in software engineering have been devoted. Existing studies focus on the development of DL software and extensively analyze faults in DL programs. However, the deployment of DL software has not been comprehensively studied. To fill this knowledge gap, this paper presents a comprehensive study on understanding challenges in deploying DL software. We mine and analyze 3,023 relevant posts from Stack Overflow, a popular Q&A website for developers, and show the increasing popularity and high difficulty of DL software deployment among developers. We build a taxonomy of specific challenges encountered by developers in the process of DL software deployment through manual inspection of 769 sampled posts and report a series of actionable implications for researchers, developers, and DL framework vendors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源