论文标题

在人类机器人同事团队中操纵的支持行动

Supportive Actions for Manipulation in Human-Robot Coworker Teams

论文作者

Bansal, Shray, Newbury, Rhys, Chan, Wesley, Cosgun, Akansel, Allen, Aimee, Kulić, Dana, Drummond, Tom, Isbell, Charles

论文摘要

机器人与人类一起越来越多的机器人(例如在制造业中的人类机器人团队中)引起了有关人们在机器人中喜欢的行为的研究问题。我们通过减少与他人作为支持的机器人行动的未来干扰并在共同确定的操作场景中调查其实用性来支持相互作用的行动。我们比较共享表挑选任务中的两个机器人模式:(1)以任务为导向:机器人仅采取行动来促进其自己的任务目标,并且(2)支持性:有时在减少未来的目标冲突时,该机器人有时会更喜欢支持措施而不是任务为导向的动作。我们在模拟中使用简化的人类模型进行的实验表明,支持动作减少了代理之间的干扰,尤其是在更困难的任务中,但也导致机器人需要更长的时间才能完成任务。我们在用户研究中在物理机器人上实现了这些模式,其中人和机器人在共享表上执行对象放置。我们的结果表明,支持机器人被人认为是一个更有利的同事,并且在两种情况下更加困难的情况下也减少了对人的干扰。但是,完成任务还需要更长的时间,突出了任务效率和人类偏好之间有趣的权衡,在设计机器人行为以实现近距离操纵方案之前,需要考虑考虑。

The increasing presence of robots alongside humans, such as in human-robot teams in manufacturing, gives rise to research questions about the kind of behaviors people prefer in their robot counterparts. We term actions that support interaction by reducing future interference with others as supportive robot actions and investigate their utility in a co-located manipulation scenario. We compare two robot modes in a shared table pick-and-place task: (1) Task-oriented: the robot only takes actions to further its own task objective and (2) Supportive: the robot sometimes prefers supportive actions to task-oriented ones when they reduce future goal-conflicts. Our experiments in simulation, using a simplified human model, reveal that supportive actions reduce the interference between agents, especially in more difficult tasks, but also cause the robot to take longer to complete the task. We implemented these modes on a physical robot in a user study where a human and a robot perform object placement on a shared table. Our results show that a supportive robot was perceived as a more favorable coworker by the human and also reduced interference with the human in the more difficult of two scenarios. However, it also took longer to complete the task highlighting an interesting trade-off between task-efficiency and human-preference that needs to be considered before designing robot behavior for close-proximity manipulation scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源