论文标题

在室温下,碳化硅中的各向异性自旋声音共振

Anisotropic Spin-Acoustic Resonance in Silicon Carbide at Room Temperature

论文作者

Hernández-Mínguez, A., Poshakinskiy, A. V., Hollenbach, M., Santos, P. V., Astakhov, G. V.

论文摘要

我们在室温下报告了碳化硅硅碳化物中心的声学驱动的旋转共振。具体而言,我们使用表面声波腔来选择性地解决磁性量子数差异$ \ pm $ 1和$ \ pm $ 2的自旋跃迁,而没有外部微波电磁场。这些自旋声音共振揭示了对静态磁场方向的非平凡依赖性,这归因于声场的内在对称性,结合了半数构成旋转系统的特殊特性。我们开发了自旋声音相互作用的微观模型,该模型描述了我们的实验数据而无需拟合参数。此外,我们预测行进表面波会导致手性自旋声音共振,该共振在磁场反转时会发生变化。这些结果确立了碳化硅作为高度倾向的混合平台,用于片上旋转旋转的机电量子控制,从而在室温下实现了工程相互作用。

We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $\pm$1 and $\pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源