论文标题

使用图形卷积网络对中毒预测的决策支持

Decision Support for Intoxication Prediction Using Graph Convolutional Networks

论文作者

Burwinkel, Hendrik, Keicher, Matthias, Bani-Harouni, David, Zellner, Tobias, Eyer, Florian, Navab, Nassir, Ahmadi, Seyed-Ahmad

论文摘要

如果怀疑急性中毒,每天都会要求毒物控制中心(PCC)立即进行分类和治疗建议。由于这些情况的时间敏感性,需要医生在最小的时间范围内提出正确的诊断和干预。通常,毒素是已知的,可以相应地提出建议。但是,在具有挑战性的情况下,只提到症状,医生必须依靠他们的临床经验。医学专家以及我们对中毒记录区域数据集的分析提供了证据,这是充满挑战的证据,因为发生的症状可能并不总是与区域区别,评估者间差异和机构工作流程所致的教科书描述相匹配。计算机辅助诊断(CADX)可以提供决策支持,但是到目前为止,尽管其潜在的价值在正确的诊断方面具有潜在的价值,但迄今为止的方法并未考虑报告的其他案例或性别案例的其他信息。在这项工作中,我们提出了一种新的基于机器学习的CADX方法,该方法使用图形卷积网络融合了患者的症状和元信息。我们进一步提出了一种新型的症状匹配方法,该方法允许将先验知识有效地纳入学习过程,并显然可以稳定毒药的预测。我们对10位具有不同经验的医生验证了我们的方法,这些医生诊断出与慕尼黑PCC的10种不同毒素的中毒病例的经验不同,并显示了我们在毒药预测的性能方面的优势。

Every day, poison control centers (PCC) are called for immediate classification and treatment recommendations if an acute intoxication is suspected. Due to the time-sensitive nature of these cases, doctors are required to propose a correct diagnosis and intervention within a minimal time frame. Usually the toxin is known and recommendations can be made accordingly. However, in challenging cases only symptoms are mentioned and doctors have to rely on their clinical experience. Medical experts and our analyses of a regional dataset of intoxication records provide evidence that this is challenging, since occurring symptoms may not always match the textbook description due to regional distinctions, inter-rater variance, and institutional workflow. Computer-aided diagnosis (CADx) can provide decision support, but approaches so far do not consider additional information of the reported cases like age or gender, despite their potential value towards a correct diagnosis. In this work, we propose a new machine learning based CADx method which fuses symptoms and meta information of the patients using graph convolutional networks. We further propose a novel symptom matching method that allows the effective incorporation of prior knowledge into the learning process and evidently stabilizes the poison prediction. We validate our method against 10 medical doctors with different experience diagnosing intoxication cases for 10 different toxins from the PCC in Munich and show our method's superiority in performance for poison prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源