论文标题

Wikiumls:通过跨语性神经排名对齐Wikipedia

WikiUMLS: Aligning UMLS to Wikipedia via Cross-lingual Neural Ranking

论文作者

Rahimi, Afshin, Baldwin, Timothy, Verspoor, Karin

论文摘要

我们介绍了将统一的医学语言系统(UMLS)与Wikipedia保持一致的工作,以促进两种资源的手动对齐。我们提出了一个跨语性的神经重新疗法模型,以将UMLS概念与Wikipedia页面相匹配,Wikipedia页面可以实现72%的召回@1,比Word和Char-Level BM25的20%改善了20%,从而使手动对齐能够以最少的努力。我们发布了我们的资源,包括700k UMLS概念的排名Wikipedia页面,以及Wikiumls,这是一个用于培训和评估UMLS和Wikipedia之间的对齐模型的数据集。这将为卫生专业人员,患者和NLP系统(包括在多语言环境中)提供更容易获得Wikipedia的访问。

We present our work on aligning the Unified Medical Language System (UMLS) to Wikipedia, to facilitate manual alignment of the two resources. We propose a cross-lingual neural reranking model to match a UMLS concept with a Wikipedia page, which achieves a recall@1 of 72%, a substantial improvement of 20% over word- and char-level BM25, enabling manual alignment with minimal effort. We release our resources, including ranked Wikipedia pages for 700k UMLS concepts, and WikiUMLS, a dataset for training and evaluation of alignment models between UMLS and Wikipedia. This will provide easier access to Wikipedia for health professionals, patients, and NLP systems, including in multilingual settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源