论文标题

普遍的彼得森图中的意大利统治

Italian domination in generalized Petersen graphs

论文作者

Gao, Hong, Huang, Jiahuan, Yin, Yanan, Yang, Yuansheng

论文摘要

在图$ g =(v,e)$中,每个顶点$ v \ in V $标记为$ 0 $,$ 1 $或$ 2 $,以使每个标记为$ 0 $的顶点均与至少一个标记为$ 2 $或两个标签的顶点标记为$ 1 $。这种标签称为$ g $的意大利主导功能(IDF)。 IDF $ F $的重量是$ W(f)= \ sum_ {v \ in V} f(v)$。 $ G $的意大利统治数为$γ_{i}(g)= \ min_ {f} w(f)$。 Gao等。 (2019年)已确定$γ_i(p(n,3))$的值。在本文中,我们专注于对普通彼得森图的意大利统治数量$ p(n,k)$,$ k \ neq3 $。我们确定$γ_i(p(n,1))$,$γ_i(p(n,2))$和$γ_i(p(n,k))$的值,$ k \ ge4 $,$ k \ equiv2,3(\ bmod5)$和$ n \ equiv0(\ bmod5)$。对于其他$ p(n,k)$,我们提供$γ_i(p(n,k))$的限制。通过获得的结果,我们部分解决了Brešar等人提出的开放问题。 (2007)给出$ p(n,1)$是$γ_i=γ_{r2} $并表征$ p(n,2)$的一个示例,其中$γ_i(p(n,2))=γ_{r2}(r2}}(p(n,2))$。此外,我们的结果暗示$ p(n,1)$ $(n \ equiv0(\ bmod \ 4))$是意大利语,$ p(n,1)$ $(n \ not \ equiv0(\ bmod \ 4))$和$ p(n,2)$不是italian。

In a graph $G=(V,E)$, each vertex $v\in V$ is labelled with $0$, $1$ or $2$ such that each vertex labelled with $0$ is adjacent to at least one vertex labelled $2$ or two vertices labelled $1$. Such kind of labelling is called an Italian dominating function (IDF) of $G$. The weight of an IDF $f$ is $w(f)=\sum_{v\in V}f(v)$. The Italian domination number of $G$ is $γ_{I}(G)=\min_{f} w(f)$. Gao et al. (2019) have determined the value of $γ_I(P(n,3))$. In this article, we focus on the study of the Italian domination number of generalized Petersen graphs $P(n, k)$, $k\neq3$. We determine the values of $γ_I(P(n, 1))$, $γ_I(P(n, 2))$ and $γ_I(P(n, k))$ for $k\ge4$, $k\equiv2,3(\bmod5)$ and $n\equiv0(\bmod5)$. For other $P(n,k)$, we present a bound of $γ_I(P(n, k))$. With the obtained results, we partially solve the open problem presented by Brešar et al. (2007) by giving $P(n,1)$ is an example for which $γ_I=γ_{r2}$ and characterizing $P(n,2)$ for which $γ_I(P(n,2))=γ_{r2}(P(n,2))$. Moreover, our results imply $P(n,1)$ $(n\equiv0(\bmod\ 4))$ is Italian, $P(n,1)$ $(n\not\equiv0(\bmod\ 4))$ and $P(n,2)$ are not Italian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源