论文标题

带有许多周期性的单词的单词长度

Palindromic Length of Words with Many Periodic Palindromes

论文作者

Rukavicka, Josef

论文摘要

有限单词$ v $的palindromic长度$ \ text {pl}(v)$是串联等于$ v $的palindromes的最小数量。 2013年,Frid,Puzynina和Zamboni猜想:如果$ W $是无限的单词,而$ k $是一个整数,以至于$ \ text {pl}(u)\ leq k $对于$ w $ of $ w $ of $ w $,那么$ w $,那么$ w $最终是定期的。 假设$ w $是一个无限的单词,$ k $是整数这样的$ \ text {pl}(u)\ leq k $,对于每个因素$ u $ of $ w $。令$ω(w,k)$是所有因素的集合$ u $ $ w $,其具有超过$ \ sqrt [k] {k^{ - 1} \ vert u \ vert} $ palindromic prefixes。我们表明$ω(w,k)$是无限的套装,我们表明,对于每个正整数$ j $,都有palindromes $ a,b $和w $ u \ inω(w,k)$,因此$(ab)^j $是$ u $ $ $ $,$ b $的一个因素。请注意,$(ab)^j $是一个周期性的单词,$(ab)^ia $是每个$ i \ leq j $的回文。这些结果证明了以下问题的合理性:$ b $的后缀和定期单词$(AB)^j $的后缀的列表长度是多少? 众所周知,$ \ lvert \ text {pl}(uv) - \ text {pl}(u)\ rvert \ leq \ leq \ text {pl}(v)$,其中$ u $ and $ v $是非空的单词。我们文章的主要结果表明,如果$ a,b $是palindromes,$ b $是非exprenty,$ u $是$ b $的非空后缀,$ \ vert ab \ vert $是$ aba $的最低时期,$ j $是带有$ j \ geq3 \ geq3 \ pl {pl {pl}(u)的正整数,那么$ \ text {pl}(u(ab)^j) - \ text {pl}(u)\ geq 0 $。

The palindromic length $\text{PL}(v)$ of a finite word $v$ is the minimal number of palindromes whose concatenation is equal to $v$. In 2013, Frid, Puzynina, and Zamboni conjectured that: If $w$ is an infinite word and $k$ is an integer such that $\text{PL}(u)\leq k$ for every factor $u$ of $w$ then $w$ is ultimately periodic. Suppose that $w$ is an infinite word and $k$ is an integer such $\text{PL}(u)\leq k$ for every factor $u$ of $w$. Let $Ω(w,k)$ be the set of all factors $u$ of $w$ that have more than $\sqrt[k]{k^{-1}\vert u\vert}$ palindromic prefixes. We show that $Ω(w,k)$ is an infinite set and we show that for each positive integer $j$ there are palindromes $a,b$ and a word $u\in Ω(w,k)$ such that $(ab)^j$ is a factor of $u$ and $b$ is nonempty. Note that $(ab)^j$ is a periodic word and $(ab)^ia$ is a palindrome for each $i\leq j$. These results justify the following question: What is the palindromic length of a concatenation of a suffix of $b$ and a periodic word $(ab)^j$ with "many" periodic palindromes? It is known that $\lvert\text{PL}(uv)-\text{PL}(u)\rvert\leq \text{PL}(v)$, where $u$ and $v$ are nonempty words. The main result of our article shows that if $a,b$ are palindromes, $b$ is nonempty, $u$ is a nonempty suffix of $b$, $\vert ab\vert$ is the minimal period of $aba$, and $j$ is a positive integer with $j\geq3\text{PL}(u)$ then $\text{PL}(u(ab)^j)-\text{PL}(u)\geq 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源