论文标题
使用解剖结构集中图像分类技术从前眼图像进行自动眼病分类方法
Automated eye disease classification method from anterior eye image using anatomical structure focused image classification technique
论文作者
论文摘要
本文提出了一种自动分类的感染性和非感染性疾病的分类方法。感染性疾病和非感染性疾病病例的治疗是不同的。将它们与前眼睛图像区分开来,对于决定治疗计划很重要。眼科医生以经验来区分他们。基于计算机援助,对它们进行定量分类。我们提出了一种自动分类方法,将前眼图像用于感染或非感染疾病的病例。前眼图像具有较大的眼睛位置和照明的亮度。这使得分类很困难。如果我们专注于角膜,则在感染性疾病和非感染性疾病病例之间,角膜中不透明区域的位置不同。因此,我们通过使用针对角膜的对象检测方法来解决前眼图像分类任务。这种方法可以说为“解剖结构集中图像分类”。我们使用Yolov3对象检测方法来检测感染性疾病的角膜和非感染疾病的角膜。检测结果用于定义图像的分类结果。在我们使用前眼图像的实验中,有88.3%的图像通过所提出的方法正确分类。
This paper presents an automated classification method of infective and non-infective diseases from anterior eye images. Treatments for cases of infective and non-infective diseases are different. Distinguishing them from anterior eye images is important to decide a treatment plan. Ophthalmologists distinguish them empirically. Quantitative classification of them based on computer assistance is necessary. We propose an automated classification method of anterior eye images into cases of infective or non-infective disease. Anterior eye images have large variations of the eye position and brightness of illumination. This makes the classification difficult. If we focus on the cornea, positions of opacified areas in the corneas are different between cases of the infective and non-infective diseases. Therefore, we solve the anterior eye image classification task by using an object detection approach targeting the cornea. This approach can be said as "anatomical structure focused image classification". We use the YOLOv3 object detection method to detect corneas of infective disease and corneas of non-infective disease. The detection result is used to define a classification result of a image. In our experiments using anterior eye images, 88.3% of images were correctly classified by the proposed method.