论文标题

CW复合Nagata理想化

CW-complex Nagata Idealizations

论文作者

Capasso, Armando, De Poi, Pietro, Ilardi, Giovanna

论文摘要

我们介绍了一种新颖的结构,使我们能够确定CW-Complex $ P(M)$的骨骼元素和$ M $变量的单元。由此,我们可以推断出有限的$ P(m)$的有限CW-SUBPLEXE之间是有限的简单复合物的商,以及一些大型标准的Artinian Gorenstein代数,在\ cite {f:s}中概括了先前的结构{f:s},\ cite {cgim} {cgim} and { 我们将其应用于Nagata理想化对级代数的概括。这些代数是标准分级的Artinian代数,其Macaulay双发生器被明确地作为Bidegree $(1,D)$的大型多项式。我们考虑与相同类型的Bidegree $(D_1,D_2)$的多项式相关的代数。

We introduce a novel construction which allows us to identify the elements of the skeletons of a CW-complex $P(m)$ and the monomials in $m$ variables. From this, we infer that there is a bijection between finite CW-subcomplexes of $P(m)$, which are quotients of finite simplicial complexes, and some bigraded standard Artinian Gorenstein algebras, generalizing previous constructions in \cite{F:S}, \cite{CGIM} and \cite{G:Z}. We apply this to a generalization of Nagata idealization for level algebras. These algebras are standard graded Artinian algebras whose Macaulay dual generator is given explicitly as a bigraded polynomial of bidegree $(1,d)$. We consider the algebra associated to polynomials of the same type of bidegree $(d_1,d_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源