论文标题

量子反问题的神经网络

Neural Networks for Quantum Inverse Problems

论文作者

Cao, Ningping, Xie, Jie, Zhang, Aonan, Hou, Shi-Yao, Zhang, Lijian, Zeng, Bei

论文摘要

量子逆问题(QIP)是从一组测量值中估算未知量子系统$ρ$的问题,而经典对应物是从一组观测值中估算分布的反问题。在本文中,我们提出了一种基于神经网络的QIP方法,该方法已广泛探索其经典对应物。所提出的方法利用QIP的量子性,并利用神经网络的计算能力来实现量子状态估计的更高效率。我们从部分信息中测试了未知状态$ρ$的最大熵估计问题的方法。我们的方法对数值实验和量子光学实验都产生了高保真度,效率和鲁棒性。

Quantum Inverse Problem (QIP) is the problem of estimating an unknown quantum system $ρ$ from a set of measurements, whereas the classical counterpart is the Inverse Problem of estimating a distribution from a set of observations. In this paper, we present a neural network based method for QIPs, which has been widely explored for its classical counterpart. The proposed method utilizes the quantum-ness of the QIPs and takes advantage of the computational power of neural networks to achieve higher efficiency for the quantum state estimation. We test the method on the problem of Maximum Entropy Estimation of an unknown state $ρ$ from partial information. Our method yields high fidelity, efficiency and robustness for both numerical experiments and quantum optical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源