论文标题
小组模棱两可的生成对抗网络
Group Equivariant Generative Adversarial Networks
论文作者
论文摘要
生成对抗性视觉合成的最新改进在自我监视的环境中结合了真实和假的图像转换,从而导致稳定性和感知忠诚度提高。但是,这些方法通常涉及通过GAN目标中的其他正规化器进行图像增强,从而将有价值的网络容量用于近似转换均值而不是其所需任务。在这项工作中,我们通过小组等级卷积网络明确将归纳对称先验纳入网络体系结构。组互动具有较高的表达能力,样品较少,并导致发电机和歧视器之间的梯度反馈更好。我们表明,群体等级使跨正规化器,体系结构和损失功能的最新技术无缝集成。我们通过改善对称成像数据集的有限数据制度的生成,甚至可以找到具有首选方向的自然图像的好处,从而证明了我们方法的有条件合成的实用性。
Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augmentations via additional regularizers in the GAN objective and thus spend valuable network capacity towards approximating transformation equivariance instead of their desired task. In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks. Group-convolutions have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator. We show that group-equivariance integrates seamlessly with recent techniques for GAN training across regularizers, architectures, and loss functions. We demonstrate the utility of our methods for conditional synthesis by improving generation in the limited data regime across symmetric imaging datasets and even find benefits for natural images with preferred orientation.