论文标题

纠缠量子蜂窝自动机,身体复杂性和Goldilocks规则

Entangled quantum cellular automata, physical complexity, and Goldilocks rules

论文作者

Hillberry, Logan E., Jones, Matthew T., Vargas, David L., Rall, Patrick, Halpern, Nicole Yunger, Bao, Ning, Notarnicola, Simone, Montangero, Simone, Carr, Lincoln D.

论文摘要

蜂窝自动机是相互作用的经典位,显示出各种出现的行为,从分形到随机数发电机再到图灵完整计算。我们发现,量子细胞自动机(QCA)可以在描述生物学,社会学和经济学的复杂性科学意义上表现出复杂性。在我们通过平衡活动和停滞来定义的“ Goldilocks规则”下演变时,QCA表现出复杂性。我们的Goldilocks规则会产生强大的动力学特征(纠缠呼吸器),网络结构和动力学与复杂性以及持续的熵波动一致。当今的实验平台 - Rydberg阵列,被困的离子和超导量子台 - 可以实施我们的Goldilocks协议,使得可以测试的复杂性科学与QCA暴露的量子计算之间的链接。

Cellular automata are interacting classical bits that display diverse emergent behaviors, from fractals to random-number generators to Turing-complete computation. We discover that quantum cellular automata (QCA) can exhibit complexity in the sense of the complexity science that describes biology, sociology, and economics. QCA exhibit complexity when evolving under "Goldilocks rules" that we define by balancing activity and stasis. Our Goldilocks rules generate robust dynamical features (entangled breathers), network structure and dynamics consistent with complexity, and persistent entropy fluctuations. Present-day experimental platforms -- Rydberg arrays, trapped ions, and superconducting qubits -- can implement our Goldilocks protocols, making testable the link between complexity science and quantum computation exposed by our QCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源