论文标题

使用新颖的时间衰减模型进行选举预测:预测美国总统选举

Electoral Forecasting Using a Novel Temporal Attenuation Model: Predicting the US Presidential Elections

论文作者

Topirceanu, Alexandru

论文摘要

选举预测是一项持续的科学挑战,具有高度的社会影响,因为当前数据驱动的方法试图有效地将统计数据与经济指数和机器学习相结合。但是,网络科学的最新研究指出了时间特征在意见传播中的重要性。因此,我们结合了微尺度意见动力学和时间流行病的概念,并开发了一种新型的宏观尺度时间衰减(TA)模型,该模型使用选举前的民意调查数据来提高预测准确性。我们的假设是,宣传民意调查的时机在舆论的振荡方式中起着重要作用,尤其是在选举之前。因此,我们将意见的动力定义为一种时间功能,当在多场选民中注入意见时会反弹,并在放松状态下抑制。我们在1968 - 2016年之间从美国总统选举中的调查数据验证了TA,而TA在13个总统选举中的10次中均超过了统计方法,也是当时最好的民意测验者。我们提出了TA模型的两个不同的实现,它们在48年期间累积了2.8-3.28点的平均预测误差。相反,统计方法累积了7.48点误差,最佳民意测验者累积了3.64点。总体而言,与最新情况相比,TA的预测性能提高了23-37%。我们表明,当相对较少的民意调查可用时,TA的有效性不会下降;此外,随着选举前调查的可用性,我们认为我们的TA模型将与其他现代选举预测技术一起成为参考。

Electoral forecasting is an ongoing scientific challenge with high social impact, as current data-driven methods try to efficiently combine statistics with economic indices and machine learning. However, recent studies in network science pinpoint towards the importance of temporal characteristics in the diffusion of opinion. As such, we combine concepts of micro-scale opinion dynamics and temporal epidemics, and develop a novel macro-scale temporal attenuation (TA) model, which uses pre-election poll data to improve forecasting accuracy. Our hypothesis is that the timing of publicizing opinion polls plays a significant role in how opinion oscillates, especially right before elections. Thus, we define the momentum of opinion as a temporal function which bounces up when opinion is injected in a multi-opinion system of voters, and dampens during states of relaxation. We validate TA on survey data from the US Presidential Elections between 1968-2016, and TA outperforms statistical methods, as well the best pollsters at their time, in 10 out of 13 presidential elections. We present two different implementations of the TA model, which accumulate an average forecasting error of 2.8-3.28 points over the 48-year period. Conversely, statistical methods accumulate 7.48 points error, and the best pollsters accumulate 3.64 points. Overall, TA offers increases of 23-37% in forecasting performance compared to the state of the art. We show that the effectiveness of TA does not drop when relatively few polls are available; moreover, with increasing availability of pre-election surveys, we believe that our TA model will become a reference alongside other modern election forecasting techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源