论文标题

墨菲分解和校准解决原则:关于预测评估的新观点

The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation

论文作者

Pohle, Marc-Oliver

论文摘要

我提供了关于预测评估的统一观点,表征了各种类型的准确预测,从简单的点到完整的概率预测,从两个基本的基础属性,自动启动和解决方案方面,可以解释为描述缺乏系统的错误和高信息内容。这种“校准解决原则”为预测的本质提供了新的见解,并通过Gneiting等人概括了著名的清晰度原理。 (2007)从概率到所有类型的预测。它揭示了几种广泛使用的预测评估方法的缺点。该原理是基于我提供的墨菲分解的完全一般版本。这种分解的特殊情况是众所周知的,广泛用于气象学。 除了以这种新的理论方式使用分解之外,在适当的理论框架中引入了它及其基础属性之后,还伴随着一个说明性的例子,我还以其古典意义作为一种预测评估方法,就像气象学家所做的那样:这样,它可以预测预测驱动器驱动器和配乐的经典预测方法。我讨论通过内核回归对分解的估计,然后将其应用于流行的经济预测。分析来自美国对英格兰银行粉丝图表的专业预测者和分位预测的平均预测的分析确实产生了有趣的新见解,并突出了该方法的潜力。

I provide a unifying perspective on forecast evaluation, characterizing accurate forecasts of all types, from simple point to complete probabilistic forecasts, in terms of two fundamental underlying properties, autocalibration and resolution, which can be interpreted as describing a lack of systematic mistakes and a high information content. This "calibration-resolution principle" gives a new insight into the nature of forecasting and generalizes the famous sharpness principle by Gneiting et al. (2007) from probabilistic to all types of forecasts. It amongst others exposes the shortcomings of several widely used forecast evaluation methods. The principle is based on a fully general version of the Murphy decomposition of loss functions, which I provide. Special cases of this decomposition are well-known and widely used in meteorology. Besides using the decomposition in this new theoretical way, after having introduced it and the underlying properties in a proper theoretical framework, accompanied by an illustrative example, I also employ it in its classical sense as a forecast evaluation method as the meteorologists do: As such, it unveils the driving forces behind forecast errors and complements classical forecast evaluation methods. I discuss estimation of the decomposition via kernel regression and then apply it to popular economic forecasts. Analysis of mean forecasts from the US Survey of Professional Forecasters and quantile forecasts derived from Bank of England fan charts indeed yield interesting new insights and highlight the potential of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源