论文标题

基于电磁诱导的透明度的超导谐振器的可调和弱侵入性探测

Tuneable and weakly-invasive probing of a superconducting resonator based onelectromagnetically induced transparency

论文作者

Ann, Byoung-moo, Steele, Gary A.

论文摘要

具有高质量因子的超导腔在电路量子电动力学和量子计算中起着至关重要的作用。在测量高频模式的固有损耗速率中,设计适当的耦合到测量电路可能是一件具有挑战性的,以使所得信号足够强,但同时耦合并不会导致不必要的负载电路,从而掩盖了内部内部的内部损失率。在这里,我们基于弱分散偶联方向上的谐振器和Qubit之间的电磁诱导的透明度(EIT)的现象,提出并展示了高Q谐振器的光谱探针。将边带驱动信号应用于量子位,我们观察到源自量子光谱中EIT的干扰倾角,源自量子探针信号和边带转变之间的量子干扰。从浸入的宽度和深度,我们可以从分析模型中提取谐振器的单光子线宽。在以前未开发的制度中,量子wit的线宽比谐振器更大的线宽减少了制作高稳态量子的技术挑战,并且对于保持与谐振器的耦合的弱侵入性极限是有利的。此外,可以将谐振器和量子之间的侧带和分散耦合在控制边带驱动力强度的情况下调整$。这种$ Initu $可调性允许该技术用于有效测量以下固定上限的任何质量因子的谐振损耗率,我们设备的$ 10^8 $订单,可以使用单个设计进行探测的广泛质量因素。

Superconducting cavities with high quality factors play an essential role in circuit quantum electrodynamics and quantum computing. In measurements of the the intrinsic loss rates of high frequency modes, it can be challenging to design an appropriate coupling to the measurement circuit in such a way that the resulting signal is sufficiently strong but also that this coupling does not lead to unwanted loading circuit, obscuring the intrinsic internal loss rates. Here, we propose and demonstrate a spectroscopic probe of high-Q resonators based on the phenomena of electromagnetically-induced transparency (EIT) between the resonator and qubit in the weak dispersive coupling regime. Applying a sideband drive signal to the qubit, we observe an interference dip originated from EIT in the qubit spectroscopy, originating from the quantum interference between the qubit probe signal and sideband transition. From the width and the depth of the dip, we are able to extract the single-photon linewidth of the resonator from an analytical model. Working in a previously unexplored regime in which the qubit has a larger linewidth than the resonator reduces the technical challenge of making a high-coherence qubit and is advantageous for remaining in the weakly-invasive limit of coupling to the resonator. Furthermore, the sideband and the dispersive coupling between the resonator and the qubit can be tuned $in~situ$ controlling the strength of the sideband drive power. This $in-situ$ tuneability allows the technique to be applied for efficient measurement of the resonator loss rate for any quality factor below a fixed upper bound, on the order of $10^8$ for our device, allowing a wide range of quality factors to probed using a single design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源