论文标题

Artemis:指示性单文件摘要的一种新颖的注释方法

Artemis: A Novel Annotation Methodology for Indicative Single Document Summarization

论文作者

Jha, Rahul, Bi, Keping, Li, Yang, Pakdaman, Mahdi, Celikyilmaz, Asli, Zhiboedov, Ivan, McDonald, Kieran

论文摘要

我们描述了Artemis(可用于丰富,可牵引,提取,多域,指示性摘要的注释方法),这是一种新型的层次注释过程,可为来自多个领域的文档提供指示性摘要。当前的汇总评估数据集是单域,并集中在一些自然发生的摘要的少数域,例如新闻和科学文章。这些不足以培训和评估汇总模型,用于文档管理和信息检索系统,这些模型需要处理来自多个域中的文档。与其他注释方法(例如相对效用和金字塔)相比,Artemis更容易处理,因为法官在对其中一个句子做出重要的判断时,同时提供了类似的富裕句子重要性注释,因此不需要查看文档中的所有句子。我们详细描述注释过程,并将其与其他类似的评估系统进行比较。我们还对532个注释文档的样本集提出了分析和实验结果。

We describe Artemis (Annotation methodology for Rich, Tractable, Extractive, Multi-domain, Indicative Summarization), a novel hierarchical annotation process that produces indicative summaries for documents from multiple domains. Current summarization evaluation datasets are single-domain and focused on a few domains for which naturally occurring summaries can be easily found, such as news and scientific articles. These are not sufficient for training and evaluation of summarization models for use in document management and information retrieval systems, which need to deal with documents from multiple domains. Compared to other annotation methods such as Relative Utility and Pyramid, Artemis is more tractable because judges don't need to look at all the sentences in a document when making an importance judgment for one of the sentences, while providing similarly rich sentence importance annotations. We describe the annotation process in detail and compare it with other similar evaluation systems. We also present analysis and experimental results over a sample set of 532 annotated documents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源