论文标题

长期的短期内存网络和债券收益预测的Laglasso:在黑匣子内窥视

Long short-term memory networks and laglasso for bond yield forecasting: Peeping inside the black box

论文作者

Nunes, Manuel, Gerding, Enrico, McGroarty, Frank, Niranjan, Mahesan

论文摘要

固定收益资产管理中的现代决策从智能系统中受益,其中涉及最先进的机器学习模型和适当的方法。我们使用长期短期记忆(LSTM)网络对债券产量预测进行了首次研究,从而验证其潜力并确定其内存优势。具体而言,我们使用具有三个输入序列和五个预测范围的单变量LSTM对10年债券产量进行建模。我们将多层感知器(MLP),单变量和最相关的功能进行比较。为了揭开与LSTM相关的黑匣子的概念,我们进行了模型的首次内部研究。为此,我们使用序列到序列体系结构,UNI和多变量来通过时间,在存储单元中选定的位置计算LSTM信号。然后,我们开始使用外源信息来解释各州的信号,以开发出LSTM-Laglasso方法论。结果表明,具有额外内存的单变量LSTM模型能够使用宏观经济和市场信息获得与多元MLP相似的结果。此外,较短的预测范围需要较小的输入序列,反之亦然。在LSTM信号中发现的最显着的属性是单位通过时间的激活/停用,以及按产量范围或特征对单元进行专业化。这些信号很复杂,但可以通过外源变量来解释。此外,通过LSTM-Laglasso确定的一些相关功能不常用于预测模型中。总之,我们的工作验证了LSTMS和债券方法的潜力,为金融从业人员提供了其他工具。

Modern decision-making in fixed income asset management benefits from intelligent systems, which involve the use of state-of-the-art machine learning models and appropriate methodologies. We conduct the first study of bond yield forecasting using long short-term memory (LSTM) networks, validating its potential and identifying its memory advantage. Specifically, we model the 10-year bond yield using univariate LSTMs with three input sequences and five forecasting horizons. We compare those with multilayer perceptrons (MLP), univariate and with the most relevant features. To demystify the notion of black box associated with LSTMs, we conduct the first internal study of the model. To this end, we calculate the LSTM signals through time, at selected locations in the memory cell, using sequence-to-sequence architectures, uni and multivariate. We then proceed to explain the states' signals using exogenous information, for what we develop the LSTM-LagLasso methodology. The results show that the univariate LSTM model with additional memory is capable of achieving similar results as the multivariate MLP using macroeconomic and market information. Furthermore, shorter forecasting horizons require smaller input sequences and vice-versa. The most remarkable property found consistently in the LSTM signals, is the activation/deactivation of units through time, and the specialisation of units by yield range or feature. Those signals are complex but can be explained by exogenous variables. Additionally, some of the relevant features identified via LSTM-LagLasso are not commonly used in forecasting models. In conclusion, our work validates the potential of LSTMs and methodologies for bonds, providing additional tools for financial practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源