论文标题
GL(N,F_Q)的Borel收缩的增压器理论
Supercharacter theory for the Borel contraction of the group GL(n,F_q)
论文作者
论文摘要
迪亚科尼斯和艾萨克斯在2008年提出了增压器理论的概念。 给定有限群的增压器理论是一对某些复杂字符的系统,以及将群体分为具有类似于不可约字符系统的属性和分配为共轭类的类的类。在本文中,我们考虑了一般线性组在有限场上通过Borel收缩获得的组。对于这个组,我们构建了增压器理论。在ROOK安置方面,我们对增压器和超类别进行分类,计算超类上的增压器的值
The notion of a supercharacter theory was proposed by P. Diaconis and I.M. Isaacs in 2008. A supercharacter theory for a given finite group is a pair of the system of certain complex characters and the partition of group into classes that have properties similar to the system of irreducible characters and the partition into conjugacy classes. In the present paper, we consider the group obtained by the Borel contraction from the general linear group over a finite field. For this group, we construct the supercharacter theory. In terms of rook placements, we classify supercharacters and superclasses, calculate values of supercharacters on superclasses