论文标题

深度学习和广告/QCD

Deep Learning and AdS/QCD

论文作者

Akutagawa, Tetsuya, Hashimoto, Koji, Sumimoto, Takayuki

论文摘要

我们提出了一种深度学习方法,以从HADRON光谱数据中构建AD/QCD模型。通用ADS/QCD模型的一个主要问题是,允许对QCD可观测值全息计算的批量重力度量。我们采用实验测量的$ρ$和$ a_2 $梅森的光谱作为培训数据,并执行监督的机器学习,该学习确定了ADS/QCD模型的具体度量和DILATON概况。我们的深度学习(DL)架构基于ADS/DL对应(ARXIV:1802.08313),其中深度神经网络被识别为出现的散装时段。

We propose a deep learning method to build an AdS/QCD model from the data of hadron spectra. A major problem of generic AdS/QCD models is that a large ambiguity is allowed for the bulk gravity metric with which QCD observables are holographically calculated. We adopt the experimentally measured spectra of $ρ$ and $a_2$ mesons as training data, and perform a supervised machine learning which determines concretely a bulk metric and a dilaton profile of an AdS/QCD model. Our deep learning (DL) architecture is based on the AdS/DL correspondence (arXiv:1802.08313) where the deep neural network is identified with the emergent bulk spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源