论文标题
Quiver Hecke和Minogrammatic Bottsamelson内态代数的路径同构
Path isomorphisms between quiver Hecke and diagrammatic Bott-Samelson endomorphism algebras
论文作者
论文摘要
我们在颤抖的代数和埃利亚斯·威廉姆森的图式内态代数代数之间构建了明确的同构。作为推论,我们推断出这些代数的分解数(包括作为示例对称基团和广义代数代数)在重武学上等于相关的$ p $ -p $ -kazhdan-lusztig多项式,但前提是特征比coxeter数大。因此,我们给出了Riche-Williamson最近专着的主要定理的基础,更明确的证据,并将其分类等效延伸到Cyclotomic Hecke代数,从而解决了Libedinsky-Plaza的分类Blob猜想。
We construct an explicit isomorphism between (truncations of) quiver Hecke algebras and Elias-Williamson's diagrammatic endomorphism algebras of Bott-Samelson bimodules. As a corollary, we deduce that the decomposition numbers of these algebras (including as examples the symmetric groups and generalised blob algebras) are tautologically equal to the associated $p$-Kazhdan-Lusztig polynomials, provided that the characteristic is greater than the Coxeter number. We hence give an elementary and more explicit proof of the main theorem of Riche-Williamson's recent monograph and extend their categorical equivalence to cyclotomic Hecke algebras, thus solving Libedinsky-Plaza's categorical blob conjecture.