论文标题

通用Hankel矩阵的坐标部分

Coordinate sections of generic Hankel matrices

论文作者

Cunha, Rainelly, Mostafazadehfard, Maral, Ramos, Zaqueu, simis, Aron

论文摘要

一个人通过平方通用的汉克尔矩阵的坐标部分进行了脱位,该级别的特征性零是$ k $,及其主要相关结构,例如矩阵的决定因素,矩阵的决定因素,其部分衍生物由其部分衍生物(由这些衍生物定义为hessian Matrix,Hessian Matrix和Mataximal submaximal subsrix of the Matrix of the Polarix of the Offical sarrix)。事实证明,在任何此类退化中,极性图在通用情况下都不是人类的。是否考虑了矩阵的行列式$ f $是(segre)预期多重性的哈西亚人的一个因素,为此建立了$ v(f)$的双重乘积的预期下限。

One deals with degenerations by coordinate sections of the square generic Hankel matrix over a field $k$ of characteristic zero, along with its main related structures, such as the determinant of the matrix, the ideal generated by its partial derivatives, the polar map defined by these derivatives, the Hessian matrix and the ideal of the submaximal minors of the matrix. It is proved that the polar map is dominant for any such degenerations, and not homaloidal in the generic case. The problem of whether the determinant $f$ of the matrix is a factor of the Hessian with the (Segre) expected multiplicity is considered, for which the expected lower bound of the dual variety of $V(f)$ is established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源