论文标题
从紧凑的局部状态到随机量子梳中的多体疤痕
From compact localized states to many-body scars in the random quantum comb
论文作者
论文摘要
在这项工作中,我们研究了构型障碍对特征状态的影响以及紧密结合模型对准二维梳子晶格的动力学特性,该型号由骨干组成,该骨架装饰有随机分布长度的线性分支。我们表明,所有特征状态都是沿梳子的骨干呈指数定位的。此外,我们证明存在大量的紧凑型局部状态,其定位长度完全为零。我们提供对这些状态的分析理解,并表明它们在沿着系统的骨架上存在密度密度相互作用的情况下存活,在该密度相互作用的情况下,对于足够低但有限的颗粒密度,它们形成了多体疤痕状态。最后,我们讨论了这些紧凑的局部状态对具有构型障碍系统的动力学特性的含义,以及在物理相关产品状态的时间演变中长期瞬态行为的相应外观。
In this work we investigate the effects of configurational disorder on the eigenstates and dynamical properties of a tight-binding model on a quasi-one-dimensional comb lattice, consisting of a backbone decorated with linear offshoots of randomly distributed lengths. We show that all eigenstates are exponentially localized along the backbone of the comb. Moreover, we demonstrate the presence of an extensive number of compact localized states with precisely zero localization length. We provide an analytical understanding of these states and show that they survive in the presence of density-density interactions along the backbone of the system where, for sufficiently low but finite particle densities, they form many-body scar states. Finally, we discuss the implications of these compact localized states on the dynamical properties of systems with configurational disorder, and the corresponding appearance of long-lived transient behaviour in the time evolution of physically relevant product states.