论文标题
在弯曲时空中运行量子场理论中的真空:重新归一化$ρ_{vac} $没有$ \ sim m^4 $项
Running vacuum in quantum field theory in curved spacetime: renormalizing $ρ_{vac}$ without $\sim m^4$ terms
论文作者
论文摘要
爱因斯坦方程式中的$λ$ - term是$λ$ CDM宇宙学模型的基本构建块。即使该模型没有根本问题,但也没有任何替代性暗能量提案所规避的问题。在这里,我们坚持使用$λ$ - 期,但我们认为它在弯曲时空中可以是量子场理论(QFT)中的“运行数量”。大量现象学作品表明,此选项与具有刚性宇宙学术语的$λ$ CDM具有很高的竞争力。所谓的“运行真空模型”(RVM)的特征是真空能量密度,$ρ_{vac} $,是哈勃参数及其时间衍生物的一系列(偶数)功率。这种理论形式是由一般重新归一化组论点的动机,看起来合理。在这里,我们进一步介绍了FLRW时空中QFT内RVM结构的起源。我们借助于绝热的正则化程序来计算重新归一化的能量量张量,并发现它基本上导致了RVM形式。这意味着$ρ_{vac}(h)$以常数术语加动力组件$ {\ cal o}(h^2)$和$ {\ cal o}(h^4)$演变,后者仅与早期的宇宙相关。但是,重新归一化的$ρ_{vac}(h)$没有危险的条款与群体的四分之一($ \ sim m^4 $)成正比,这些术语是众所周知的非常大的贡献来源。目前,$ρ_{vac}(h)$由添加常数术语主导,伴随着轻度的动态组件$ \ sim门νH^2 $($ | n | n | \ ll1 $),它们模仿了典型。
The $Λ$-term in Einstein's equations is a fundamental building block of the `concordance' $Λ$CDM model of cosmology. Even though the model is not free of fundamental problems, they have not been circumvented by any alternative dark energy proposal either. Here we stick to the $Λ$-term, but we contend that it can be a `running quantity' in quantum field theory (QFT) in curved spacetime. A plethora of phenomenological works have shown that this option can be highly competitive with the $Λ$CDM with a rigid cosmological term. The, so-called, `running vacuum models' (RVM's) are characterized by the vacuum energy density, $ρ_{vac}$, being a series of (even) powers of the Hubble parameter and its time derivatives. Such theoretical form has been motivated by general renormalization group arguments, which look plausible. Here we dwell further upon the origin of the RVM structure within QFT in FLRW spacetime. We compute the renormalized energy-momentum tensor with the help of the adiabatic regularization procedure and find that it leads essentially to the RVM form. This means that $ρ_{vac}(H)$ evolves as a constant term plus dynamical components ${\cal O}(H^2)$ and ${\cal O}(H^4)$, the latter being relevant for the early universe only. However, the renormalized $ρ_{vac}(H)$ does not carry dangerous terms proportional to the quartic power of the masses ($\sim m^4$) of the fields, these terms being a well-known source of exceedingly large contributions. At present, $ρ_{vac}(H)$ is dominated by the additive constant term accompanied by a mild dynamical component $\sim νH^2$ ($|ν|\ll1$), which mimics quintessence.