论文标题

有限生成的nilpotent组的一致性亚组问题

The Congruence Subgroup Problem for finitely generated Nilpotent Groups

论文作者

Ben-Ezra, David El-Chai, Lubotzky, Alexander

论文摘要

有限生成的组$γ$和$ g \ leq aut(γ)$的一致性子组问题询问地图$ \ hat {g} \ to aut(\hatγ)$是注入性的,还是更一般而言,其内核$ c \ left是什么(g,γ\ \ right)$?这里$ \ hat {x} $表示$ x $的涂料完成。在情况下,$ g = aut(γ)$我们表示$ c \ left(γ\右)= c \ left(aut(γ),γ\右)$。 令$γ$为有限生成的组,$ \barγ=γ/[γ,γ] $和$γ^{*} = \barγ/tor(\barγ)\ cong \ mathbb {z}^{(d)} $。表示$ aut^{*}(γ)= \ textrm {im}(aut(γ)\ to aut(γ^{*})))\ leq gl_ {d}(\ mathbb {z})$。在本文中,我们表明,当$γ$ nilpotent时,有一个规范的同构$ c \ left(γ\ right)\ simeq c(aut^{*}(γ)(γ),γ^{*})$。换句话说,$ c \ left(γ\右)$完全取决于算术组$ aut^{*}(γ)$的经典一致性子组问题的解决方案。 特别是,如果$γ=ψ_{n,c} $是$ n $元素上的$ c $ class $ c $的免费生成的,我们得到$ c(ψ_{n,c})= c(\ mathbb {z} $ c(ψ_{2,c})= c(\ mathbb {z}^{(2)})= \ hat {f}_Ω$ =可计数的发电机数量上的免费profinite组。

The congruence subgroup problem for a finitely generated group $Γ$ and $G\leq Aut(Γ)$ asks whether the map $\hat{G}\to Aut(\hatΓ)$ is injective, or more generally, what is its kernel $C\left(G,Γ\right)$? Here $\hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Γ)$ we denote $C\left(Γ\right)=C\left(Aut(Γ),Γ\right)$. Let $Γ$ be a finitely generated group, $\barΓ=Γ/[Γ,Γ]$, and $Γ^{*}=\barΓ/tor(\barΓ)\cong\mathbb{Z}^{(d)}$. Denote $Aut^{*}(Γ)=\textrm{Im}(Aut(Γ)\to Aut(Γ^{*}))\leq GL_{d}(\mathbb{Z})$. In this paper we show that when $Γ$ is nilpotent, there is a canonical isomorphism $C\left(Γ\right)\simeq C(Aut^{*}(Γ),Γ^{*})$. In other words, $C\left(Γ\right)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Γ)$. In particular, in the case where $Γ=Ψ_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Ψ_{n,c})=C(\mathbb{Z}^{(n)})=\{e\}$ whenever $n\geq3$, and $C(Ψ_{2,c})=C(\mathbb{Z}^{(2)})=\hat{F}_ω$ = the free profinite group on countable number of generators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源