论文标题
在动态约束下进行多任务学习的数据选择
Data selection for multi-task learning under dynamic constraints
论文作者
论文摘要
基于学习的技术越来越有效地使用数据驱动的模型来控制复杂的系统。但是,到目前为止所做的大多数工作都集中在学习单个任务或控制法律上。因此,它仍然是一项很大程度上尚未解决的研究问题,即如何在同一系统上有效,同时学习多个任务。特别是,没有为多任务控制设置设计有效的状态空间探索方案。使用此研究差距作为我们的主要动机,我们提出了一种算法,该算法近似于需要收集的最小数据集,以便为多个基于学习的控制定律实现高控制性能。我们使用概率高斯过程模型来描述系统不确定性,这使我们能够量化潜在收集的数据对每个基于学习的控制器的影响。然后,我们通过大约解决随机优化问题来确定最佳测量位置。我们表明,在合理的假设下,近似解决方案会收敛到确切问题的解决方案。此外,我们还提供了所提出算法的数值说明。
Learning-based techniques are increasingly effective at controlling complex systems using data-driven models. However, most work done so far has focused on learning individual tasks or control laws. Hence, it is still a largely unaddressed research question how multiple tasks can be learned efficiently and simultaneously on the same system. In particular, no efficient state space exploration schemes have been designed for multi-task control settings. Using this research gap as our main motivation, we present an algorithm that approximates the smallest data set that needs to be collected in order to achieve high control performance for multiple learning-based control laws. We describe system uncertainty using a probabilistic Gaussian process model, which allows us to quantify the impact of potentially collected data on each learning-based controller. We then determine the optimal measurement locations by solving a stochastic optimization problem approximately. We show that, under reasonable assumptions, the approximate solution converges towards that of the exact problem. Additionally, we provide a numerical illustration of the proposed algorithm.