论文标题

WSMN:使用MLP和NSGA-II在剪切域中优化的多功能盲水印

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II

论文作者

Haghighi, Behrouz Bolourian, Taherinia, Amir Hossein, Harati, Ahad, Rouhani, Modjtaba

论文摘要

在信息安全领域,数字水印是一个非凡的问题,避免了多媒体网络中图像的滥用。尽管可以通过密码学可以防止对未经授权的人进行访问,但不能同时用于保护图像完整性的版权保护或内容身份验证。因此,本文借助包括MLP和NSGA-II(包括MLP和NSGA-II)提出了在剪切域中优化的多功能盲水印。在这种方法中,使用有效的量化技术将鲁棒版权徽标的四个副本嵌入了剪切的近似系数中。此外,神经网络有效地从细节中提取了一个嵌入式的随机序列作为半差异身份验证标记。由于执行有效的优化算法,以选择最佳嵌入阈值,并区分块的质地,因此保留了不可识别性和鲁棒性。实验结果揭示了该方案在水印图像的质量和对混合攻击的质量上的优势,而不是其他最先进的方案。双水印图像的平均PSNR和SSIM分别为38 dB和0.95。此外,它可以有效地提取版权徽标,并以令人满意的精度将伪造区定位在严重的攻击下。

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源