论文标题
在各种宇宙学中的超级群体和超集群茧的演变
Evolution of superclusters and supercluster cocoons in various cosmologies
论文作者
论文摘要
我们研究了超级群体和超集群茧的演变(吸引力的盆地),以及宇宙学参数对进化的影响。对于不同的宇宙学模型,我们对宇宙Web的演变进行了数值模拟:具有深色能量(DE)密度的传统值的LCDM模型,无DE的开放模型OCDM,无DE的标准SCDM模型和具有增强的DE密度值的HYPER-DE HCDM模型。我们发现,这些模型的超级集体的综合是针对五个进化阶段的,对应于当前时期Z = 0,并与红移z = 1、3、10、30。我们使用最大超级群体的直径和percolters的直径作为percolation函数来描述COSMIC网络中超级群体的特性。我们分析了模型和实际斯隆数字天空调查(SDSS)样品中超级克鲁斯特人的大小和质量分布。在所有型号中,超集群茧的数量和体积都独立于宇宙学时代。超集群的质量随时间增加,并且在所有模型中,共同坐标的几何大小随时间而减小。 LCDM,OCDM和HCDM模型几乎具有相似的渗透参数。这表明定义超级分类器演变的基本参数是物质密度。 DE密度会影响密度扰动的幅度的生长以及超级散热器的质量的生长,尽管强烈的强烈。 HCDM模型的密度波动振幅的增长速度最大,并且在进化过程中是超集群质量的最大生长。高阈值密度下的几何直径和HCDM超级分类器的数量大于LCDM和OCDM超级分类器。 SCDM型号的超级频率是其他型号的两倍。 SCDM超级分类器的直径和质量较小。
We investigate the evolution of superclusters and supercluster cocoons (basins of attraction), and the influence of cosmological parameters to the evolution. We perform numerical simulations of the evolution of the cosmic web for different cosmological models: the LCDM model with a conventional value of the dark energy (DE) density, the open model OCDM with no DE, the standard SCDM model with no DE, and the Hyper-DE HCDM model with an enhanced DE density value. We find ensembles of superclusters of these models for five evolutionary stages, corresponding to the present epoch z = 0, and to redshifts z = 1, 3, 10, 30. We use diameters of the largest superclusters and the number of superclusters as percolation functions to describe properties of the ensemble of superclusters in the cosmic web. We analyse the size and mass distribution of superclusters in models and in real Sloan Digital Sky Survey (SDSS) based samples. In all models numbers and volumes of supercluster cocoons are independent on cosmological epochs. Supercluster masses increase with time, and geometrical sizes in comoving coordinates decrease with time, for all models. LCDM, OCDM and HCDM models have almost similar percolation parameters. This suggests that the essential parameter, which defines the evolution of superclusters, is the matter density. The DE density influences the growth of the amplitude of density perturbations, and the growth of masses of superclusters, albeit significantly less strongly. The HCDM model has the largest speed of the growth of the amplitude of density fluctuations, and the largest growth of supercluster masses during the evolution. Geometrical diameters and numbers of HCDM superclusters at high threshold densities are larger than for LCDM and OCDM superclusters. SCDM model has about two times more superclusters than other models; SCDM superclusters have smaller diameters and masses.