论文标题

Wronskian多项式的渐近行为是通过$ p $ cores和$ p $ Quotients分解的

Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients

论文作者

Bonneux, Niels

论文摘要

在本文中,我们考虑了通过分区标记的Wronskian多项式,可以通过$ p $ cores和$ p $ - 快价的组合概念进行分解。当$ p $ Quortient固定时,我们将获得这些多项式的渐近行为,而$ p $ core的大小增长到无穷大。为此,我们将$ p $ core与其特征向量相关联,并同时让该矢量的所有条目倾向于无限。该结果概括了Wronskian Hermite设置,该设置在$ p = 2 $时被恢复。

In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源