论文标题
朝着从半决赛编程中的密度功能理论中解决静态相关问题的解决
Towards a Resolution of the Static Correlation Problem in Density Functional Theory from Semidefinite Programming
论文作者
论文摘要
Kohn-Sham密度功能理论(DFT)长期以来一直在对密切相关和开放的壳系统的准确描述中挣扎,即使在最新的混合功能中,改进也很小。在这封信中,当边界轨道通过使用半芬仪编程(SDP)方法退化时,我们将处理DFT中的静态相关性,以最大程度地减少系统能量作为$ n $ prementable-prementable-prementent-Non-Exemempotent 1-Electron 1-电子密度降低密度矩阵的函数。在显示线性密度近似和广义梯度近似(GGA)功能的大大改善的单线 - 三个缝隙中,SDP程序揭示了现代元和混合GGA功能的缺陷,当具有准确的电子密度时,这些功能没有显示出重大改进。
Kohn-Sham density functional theory (DFT) has long struggled with the accurate description of strongly correlated and open shell systems and improvements have been minor even in the newest hybrid functionals. In this Letter we treat the static correlation in DFT when frontier orbitals are degenerate by the means of using a semidefinite programming (SDP) approach to minimize the system energy as a function of the $N$-representable, non-idempotent 1-electron reduced density matrix. While showing greatly improved singlet-triplet gaps for linear density approximation and generalized gradient approximation (GGA) functionals, the SDP procedure reveals flaws in modern meta and hybrid GGA functionals, which show no major improvements when provided with an accurate electron density.