论文标题
钻石的表面电子特性
Surface electronic properties of diamond
论文作者
论文摘要
总结了未源氢终止的钻石的表面电子特性,这些钻石被吸附物或电解质溶液中覆盖。根据HALL效应,电导率,接触电势差(CPM),扫描电子显微镜(SEM)和循环伏安法数据,讨论了钻石表面上的导电层的形成,并将其用于同性恋生长的CVD钻石膜上,具有原子质光滑的氢末端。由于电子从价带状态转移到电解质的空状态(转移掺杂),因此产生了高导电表面层。孔在层中传播,迁移率高达350 cm2/vs。板孔密度在10^11至5x10^12 cm^-2的范围内,并且依赖于电解质的pH。 Schrodinger和Poisson方程的数值溶液揭示了状态分布的2D密度。这已用于生产对离子敏感的田间效应晶体管(ISFET)。排水源电导率取决于pH,约为66 mV/pH。大于+0.7 V(pH 13)至+1.6 V(pH 1)的氧化阈值大于氧化阈值的应用导致强泄漏电流和部分表面氧化。
Surface electronic properties of undoped hydrogen terminated diamond covered with adsorbates or in electrolyte solutions are summarized. The formation of a conductive layer at the surface of diamond is discussed based on Hall effect, conductivity, contact potential difference (CPM), scanning electron microscopy (SEM), and cyclic voltammetry data applied on homoepitaxially grown CVD diamond films with atomically smooth hydrogen terminated surfaces. Due to electron transfer from valence band states into empty states of the electrolyte (transfer doping), a highly conductive surface layer is generated. Holes propagate in the layer with mobilities up to 350 cm2/Vs. The sheet hole density is in the range 10^11 to 5x10^12 cm^-2, and dependents on pH of the electrolyte. Numerical solutions of the Schrodinger and Poisson equations reveal a 2D density of state (DOS) distribution. This has been utilized to manufacture ion-sensitive field effect transistors (ISFET). The drain source conductivity is pH dependent, with about 66 mV/pH. Application of potentials larger than the oxidation threshold of +0.7 V (pH 13) to +1.6 V (pH 1) gives rise to strong leakage currents and to partial surface oxidation.