论文标题

从Navier-Stokes到Maxwell通过爱因斯坦

From Navier-Stokes to Maxwell via Einstein

论文作者

Keeler, Cynthia, Manton, Tucker, Monga, Nikhil

论文摘要

我们在经典双拷贝的背景下重新审视流体重力二元性的截止表面公式。这种流体重力二元性的空间在代数上是特殊的,当时空为四个维度时,彼得罗夫II型。我们发现两种特殊类别的流体,其双重空间表现出更高的代数专业:恒定的涡度流具有D型重力双重双重,而潜在的流量映射到N型空间型。使用经典双拷贝的Weyl版本,我们在两种情况下构建了相关的单拷贝仪表字段,发现恒定的涡流流体映射到螺线管量规场。此外,我们在潜在的流体图中找到标量到零拷贝标量的标量。

We revisit the cutoff surface formulation of fluid-gravity duality in the context of the classical double copy. The spacetimes in this fluid-gravity duality are algebraically special, with Petrov type II when the spacetime is four dimensional. We find two special classes of fluids whose dual spacetimes exhibit higher algebraic speciality: constant vorticity flows have type D gravity duals, while potential flows map to type N spacetimes. Using the Weyl version of the classical double copy, we construct associated single-copy gauge fields for both cases, finding that constant vorticity fluids map to a solenoid gauge field. Additionally we find the scalar in a potential flow fluid maps to the zeroth copy scalar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源