论文标题

流体流替代建模和数据恢复的概率神经网络

Probabilistic neural networks for fluid flow surrogate modeling and data recovery

论文作者

Maulik, Romit, Fukami, Kai, Ramachandra, Nesar, Fukagata, Koji, Taira, Kunihiko

论文摘要

我们考虑使用概率神经网络用于流体流{替代建模}和数据恢复。通过假设目标变量是从输入条件为条件的高斯分布中采样的,可以构建该框架。因此,整体配方设置了一个程序,以预测该分布的超参数,然后将其用于计算给定训练数据的目标函数。我们证明,在给定适当的模型体系结构和适当的培训数据的情况下,该框架具有基于概率后验的假设来提供预测置信区间的能力。还评估了本框架对具有嘈杂测量和有限观察结果的病例的适用性。为了证明该框架的功能,我们从降低阶数建模和四个规范数据集的空间数据恢复的角度考虑了流体动力学的规范回归问题。这项研究中考虑的示例来自(1)浅水方程,(2)二维圆柱体流,(3)NACA0012带有Gurney aplap的NACA0012机翼,以及(4)NOAA海面温度数据集。目前的结果表明,概率神经网络不仅会产生基于机器的流体流量{surrogate}模型,而且还会系统地量化其中的不确定性以帮助模型解释性。

We consider the use of probabilistic neural networks for fluid flow {surrogate modeling} and data recovery. This framework is constructed by assuming that the target variables are sampled from a Gaussian distribution conditioned on the inputs. Consequently, the overall formulation sets up a procedure to predict the hyperparameters of this distribution which are then used to compute an objective function given training data. We demonstrate that this framework has the ability to provide for prediction confidence intervals based on the assumption of a probabilistic posterior, given an appropriate model architecture and adequate training data. The applicability of the present framework to cases with noisy measurements and limited observations is also assessed. To demonstrate the capabilities of this framework, we consider canonical regression problems of fluid dynamics from the viewpoint of reduced-order modeling and spatial data recovery for four canonical data sets. The examples considered in this study arise from (1) the shallow water equations, (2) a two-dimensional cylinder flow, (3) the wake of NACA0012 airfoil with a Gurney flap, and (4) the NOAA sea surface temperature data set. The present results indicate that the probabilistic neural network not only produces a machine-learning-based fluid flow {surrogate} model but also systematically quantifies the uncertainty therein to assist with model interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源