论文标题

快速旋转中粘性热导体流体的多尺度问题

A multi-scale problem for viscous heat-conducting fluids in fast rotation

论文作者

Del Santo, Daniele, Fanelli, Francesco, Sbaiz, Gabriele, Wróblewska-Kamińska, Aneta

论文摘要

在本文中,我们研究了带有科里奥利,离心力和重力的完整Navier-Stokes-Stokes-foury系统的不可压缩和快速旋转限制,在小马赫,弗洛德和罗斯比数字以及一般准备不足的初始数据方面。我们考虑各向同性缩放(所有数字都具有相同的数量级)和多尺度情况(其中某些效应相对于其他情况是主导的)。在马赫数高于Rossby数字的情况下,我们证明了极限动力学是由不可压缩的Oberbeck-BoussinesQ系统描述的,在该系统中,速度场是水平的(根据Taylor-Proudman定理),但是对温度方程的垂直效应并不可忽略。取而代之的是,当马赫和罗斯比的数量级相同,并且在没有离心力的情况下,我们显示了与极限速度场的流函数的融合到准地藻方程,并与新的未知数的传输散射方程相连,这与新的未知数联系在一起,从而将目标密度和温度配置物链接起来。 收敛的证明是基于补偿的紧凑性论点。关键点是识别隐藏在声学波系统中的一些紧凑性。与以前的结果相比,我们的方法首先可以治疗多尺度问题中的整个参数范围,并且还可以考虑使用以某种方式关键选择$ fr = \ sqrt {ma} $的低Froude数字制度,其中$ ma $是MACH编号。这使我们能够在极限中捕获一些(低)分层的效果。

In the present paper, we study the combined incompressible and fast rotation limits for the full Navier-Stokes-Fourier system with Coriolis, centrifugal and gravitational forces, in the regime of small Mach, Froude and Rossby numbers and for general ill-prepared initial data. We consider both the isotropic scaling (where all the numbers have the same order of magnitude) and the multi-scale case (where some effect is predominant with respect to the others). In the case when the Mach number is of higher order than the Rossby number, we prove that the limit dynamics is described by an incompressible Oberbeck-Boussinesq system, where the velocity field is horizontal (according to the Taylor-Proudman theorem), but vertical effects on the temperature equation are not negligible. Instead, when the Mach and Rossby numbers have the same order of magnitude, and in absence of the centrifugal force, we show convergence to a quasi-geostrophic equation for a stream function of the limit velocity field, coupled with a transport-diffusion equation for a new unknown, which links the target density and temperature profiles. The proof of the convergence is based on a compensated compactness argument. The key point is to identify some compactness properties hidden in the system of acoustic-Poincaré waves. Compared to previous results, our method enables first of all to treat the whole range of parameters in the multi-scale problem, and also to consider a low Froude number regime with the somehow critical choice $Fr=\sqrt{Ma}$, where $Ma$ is the Mach number. This allows us to capture some (low) stratification effects in the limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源