论文标题
Toeplitz波和Hankel波的无反射特性:通过Bessel函数进行分析
The reflectionless properties of Toeplitz waves and Hankel waves: an analysis via Bessel functions
论文作者
论文摘要
我们研究了一个众所周知的矩阵,该矩阵由一个简单的空间离散化而成,在一个空间维度和时间的边界处的无反射特性。众所周知,在这种情况下,代表拉普拉斯式的熟悉的第二差矩阵的所有矩阵函数都是toeplitz矩阵和汉克尔矩阵的总和。波方程的解决方案就是这样的矩阵函数。在这里,我们研究了称为Toeplitz波和Hankel波的相应波的行为。我们表明,这些波可以写入第一类Bessel函数的某些线性组合。我们找到了这些波浪的精确和明确的公式。我们还表明,即使是奇怪的域遍历,toeplitz和hankel波也没有反射。我们的分析自然提出了一种新的计算机模拟方法,该方法可以控制,以便可以预先选择反射次数。从我们的分析中产生的一个有吸引力的结果是众所周知的Shift矩阵的外观,以及其他可能被认为是Shift Matrix的Hankel版本的矩阵。通过在移位矩阵方面揭示溶液的代数结构,我们清楚地表明了toeplitz和hankel波如何在偶数或奇数遍历的边界上无反射。尽管无反射边界条件的主题具有悠久的历史,但我们认为我们在这里采用的矩阵函数的观点是新的。
We study reflectionless properties at the boundary for the wave equation in one space dimension and time, in terms of a well-known matrix that arises from a simple discretisation of space. It is known that all matrix functions of the familiar second difference matrix representing the Laplacian in this setting are the sum of a Toeplitz matrix and a Hankel matrix. The solution to the wave equation is one such matrix function. Here, we study the behaviour of the corresponding waves that we call Toeplitz waves and Hankel waves. We show that these waves can be written as certain linear combinations of even Bessel functions of the first kind. We find exact and explicit formulae for these waves. We also show that the Toeplitz and Hankel waves are reflectionless on even, respectively odd, traversals of the domain. Our analysis naturally suggests a new method of computer simulation that allows control, so that it is possible to choose -- in advance -- the number of reflections. An attractive result that comes out of our analysis is the appearance of the well-known shift matrix, and also other matrices that might be thought of as Hankel versions of the shift matrix. By revealing the algebraic structure of the solution in terms of shift matrices, we make it clear how the Toeplitz and Hankel waves are indeed reflectionless at the boundary on even or odd traversals. Although the subject of the reflectionless boundary condition has a long history, we believe the point of view that we adopt here in terms of matrix functions is new.