论文标题

关于最大产品集的随机组集

On maximal product sets of random sets

论文作者

Mastrostefano, Daniele

论文摘要

对于[0,1)$中的每个正整数n和每个$α\,让$ b(n,α)$表示概率模型,其中随机设置$ a \ subset \ a \ subset \ {1,\ dots,n \} $是通过独立选择$ \ \ dots的每个元素而构建的。我们证明,作为$ n \ longrightArrow +\ infty $,对于$ b(n,α)$中的每一个$ a $ a $ a $ | aa | aa | \ sim | \ sim | a |^2/2 $带有概率$ 1-o(1)$,if的且仅当$ $ \ frac \ frac \ frac {\ frac {\ log log(α^2(α^2(α^2)) 4-1})}}} {\ sqrt {\ log \ log n}} \ longrightArrow- \ infty。$$这改善了Cilleruelo,Ramana和Ramaré的定理,他们证明了上述$ | AA | aa | aa | a | a | a | a | a | a | a | a | a | a |^2/2 $ n $ n $ n = o($ n = o(1/2)最大产品集的完整表征。

For every positive integer N and every $α\in [0,1)$, let $B(N, α)$ denote the probabilistic model in which a random set $A\subset \{1,\dots,N\}$ is constructed by choosing independently every element of $\{1,\dots,N\}$ with probability $α$. We prove that, as $N\longrightarrow +\infty$, for every $A$ in $B(N, α)$ we have $|AA|\ \sim |A|^2/2$ with probability $1-o(1)$, if and only if $$\frac{\log(α^2(\log N)^{\log 4-1})}{\sqrt{\log\log N}}\longrightarrow-\infty.$$ This improves a theorem of Cilleruelo, Ramana and Ramaré, who proved the above asymptotic between $|AA|$ and $|A|^2/2$ when $α=o(1/\sqrt{\log N})$, and supplies a complete characterization of maximal product sets of random sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源