论文标题

用于高分辨率卫星图像的光度多视图网状细化

Photometric Multi-View Mesh Refinement for High-Resolution Satellite Images

论文作者

Rothermel, Mathias, Gong, Ke, Fritsch, Dieter, Schindler, Konrad, Haala, Norbert

论文摘要

现代的高分辨率卫星传感器收集的光学图像(GSD)为30-50cm,这引起了人们对卫星数据的摄影测量3D表面重建的新兴趣。最新的重建方法通常会生成2.5D高程数据。在这里,我们提出了一种从多视卫星图像中恢复完整的3D表面网格的方法。所提出的方法将其作为输入粗糙的初始网格,并通过迭代更新所有顶点位置以最大程度地提高图像之间的光合抗性来对其进行完善。通过在图像空间中测量照片一致性,通过通过表面将纹理从一个图像传递到另一个图像。我们得出了通过理性函数模型(RFM)传播纹理相似性变化的方程式,通常也称为有理多项式系数(RPC)模型。此外,我们设计了一个分层方案,以优化梯度下降的表面。在使用两个不同数据集的实验中,我们表明改进可以改善与常规密集图像匹配产生的初始数字高程模型(DEM)。此外,我们证明,如果可用的话,我们的方法能够重建真实的3D几何形状,例如立面结构。

Modern high-resolution satellite sensors collect optical imagery with ground sampling distances (GSDs) of 30-50cm, which has sparked a renewed interest in photogrammetric 3D surface reconstruction from satellite data. State-of-the-art reconstruction methods typically generate 2.5D elevation data. Here, we present an approach to recover full 3D surface meshes from multi-view satellite imagery. The proposed method takes as input a coarse initial mesh and refines it by iteratively updating all vertex positions to maximize the photo-consistency between images. Photo-consistency is measured in image space, by transferring texture from one image to another via the surface. We derive the equations to propagate changes in texture similarity through the rational function model (RFM), often also referred to as rational polynomial coefficient (RPC) model. Furthermore, we devise a hierarchical scheme to optimize the surface with gradient descent. In experiments with two different datasets, we show that the refinement improves the initial digital elevation models (DEMs) generated with conventional dense image matching. Moreover, we demonstrate that our method is able to reconstruct true 3D geometry, such as facade structures, if off-nadir views are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源