论文标题

Banach空间中滤光片底座的大型红衣主教和连续性

Large cardinals and continuity of coordinate functionals of filter bases in Banach spaces

论文作者

Kania, Tomasz, Swaczyna, Jarosław

论文摘要

假设存在某些大型基数数字,我们证明,对于每一个投影滤波器$ \ MATHSCR F $,在一组自然数字上,$ \ Mathscr {f} $ - Banach空间中的基础都具有连续的坐标函数。特别是,这适用于统计收敛的过滤器,因此我们通过V. kadets解决了问题(至少在某些大型红衣主教的存在下)。在这种情况下,我们还恢复了Kochanek的结果,Kochanek证明了坐标功能的连续性(Studia Math。,2012)。

Assuming the existence of certain large cardinal numbers, we prove that for every projective filter $\mathscr F$ over the set of natural numbers, $\mathscr{F}$-bases in Banach spaces have continuous coordinate functionals. In particular, this applies to the filter of statistical convergence, thereby we solve a problem by V. Kadets (at least under the presence of certain large cardinals). In this setting, we recover also a result of Kochanek who proved continuity of coordinate functionals for countably generated filters (Studia Math., 2012).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源