论文标题
BCJ,世界表量子代数和KZ方程
BCJ, worldsheet quantum algebra and KZ equations
论文作者
论文摘要
我们利用扭曲的同源性和量子组之间的对应关系来构建开放式琴弦运动数分子的代数解释。在此设置中,表示形式取决于字符串模式,因此,分子的共同体内容以及穿刺的位置。我们表明,因此确定的量子组根系系统有助于确定Casimir出现在Knizhnik-Zamolodchikov连接中,该连接可用于将与不同穿刺位置相关的表示形式相关联。
We exploit the correspondence between twisted homology and quantum group to construct an algebra explanation of the open string kinematic numerator. In this setting the representation depends on string modes, and therefore the cohomology content of the numerator, as well as the location of the punctures. We show that quantum group root system thus identified helps determine the Casimir appears in the Knizhnik-Zamolodchikov connection, which can be used to relate representations associated with different puncture locations.