论文标题

使语言模型填充空白

Enabling Language Models to Fill in the Blanks

论文作者

Donahue, Chris, Lee, Mina, Liang, Percy

论文摘要

我们提出了一种简单的文本填充方法,这是预测文档中任何位置缺少文本跨度的任务。虽然填充可以使丰富的功能尤其是为了撰写辅助工具,但更多的关注已致力于语言建模 - 一种特殊的填充案例,在文档结束时预测文本。在本文中,我们旨在将语言模型(LMS)的功能扩展到更一般的填充任务。为此,我们在包含人工掩盖文本和被掩盖的文本的串联的序列上训练(或微调)的现成的LMS。我们表明,这种方法称为语言建模,可以使LMS能够在三个不同的领域有效填充整个句子:短篇小说,科学摘要和歌词。此外,我们表明人类难以识别我们的方法在短篇小说的领域中生成的机器生成的句子。

We present a simple approach for text infilling, the task of predicting missing spans of text at any position in a document. While infilling could enable rich functionality especially for writing assistance tools, more attention has been devoted to language modeling---a special case of infilling where text is predicted at the end of a document. In this paper, we aim to extend the capabilities of language models (LMs) to the more general task of infilling. To this end, we train (or fine-tune) off-the-shelf LMs on sequences containing the concatenation of artificially-masked text and the text which was masked. We show that this approach, which we call infilling by language modeling, can enable LMs to infill entire sentences effectively on three different domains: short stories, scientific abstracts, and lyrics. Furthermore, we show that humans have difficulty identifying sentences infilled by our approach as machine-generated in the domain of short stories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源