论文标题

$ k $ - 空格的最大集成对与至少$(k-2)$ - 空间相交

Maximal sets of $k$-spaces pairwise intersecting in at least a $(k-2)$-space

论文作者

D'haeseleer, Jozefien, Longobardi, Giovanni, Riet, Ago-Erik, Storme, Leo

论文摘要

在本文中,我们分析了$ \ mathrm {pg}(n,q)$ pairwise $ pairsections $(k-2)$ - 尺寸 - 尺寸空间,以$ 3 \ leq k \ leq k \ leq n-2 $中的$ \ mathrm {pg} $ \ mathrm {pg}(n,q)$成对相交。我们概述了这些集合的最大示例,其大小超过$ f(k,q)= \ max \ {3q^4+6q^3+5q^2+q+1,θ_{k+1}+q^4+2q^4+2q^3+3Q^2 \} $。

In this paper, we analyze the structure of maximal sets of $k$-dimensional spaces in $\mathrm{PG}(n,q)$ pairwise intersecting in at least a $(k-2)$-dimensional space, for $3 \leq k\leq n-2$. We give an overview of the largest examples of these sets with size more than $f(k,q)=\max\{3q^4+6q^3+5q^2+q+1,θ_{k+1}+q^4+2q^3+3q^2\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源