论文标题

在超紧密限制下,不均匀的页岩气的非平衡运输

Non-equilibrium transport of inhomogeneous shale gas under ultra-tight confinement

论文作者

Shan, Baochao, Wang, Runxi, Wang, Peng, Zhang, Yonghao, Zhang, Liehui, Guo, Zhaoli

论文摘要

在许多工程应用中遇到了高度限制表面的不均匀和密度气体的非平衡运输。例如,在页岩气生产过程中,从高压下从超紧密毛孔中提取甲烷,因此气体不均匀且致密。当前,分子动力学或连续化合基础,通常研究气体表面相互作用的不均匀和致密气体的复杂非平衡运输,其中气体表面相互作用起着关键作用。在这里,基于广义的恩科方程和平均场理论的可拖动动力学模型被用来融合体积排除的效果和远距离分子间吸引力。气体分子与封闭表面之间的相互作用是通过10-4-3 Lennard-Jones电位建模的,可以捕获气体表面吸附。在不同限制下,甲烷的横截面密度谱与文献中报道的分子动力学结果非常吻合,并且通过非平衡分子动力学验证了运输行为。页岩基质中甲烷流的速度由于其在纳米孔中的致密特性而被插头。定量分析压力,温度,孔径和页岩组成对密度和速度曲线的影响。我们的结果表明,Klinkenberg校正不适用于生产过程中的页岩气流。使用二阶滑动边界条件的Navier-Stokes模型无法产生适当的速度曲线,因此无法预测纳米孔中的准确流速。这项研究阐明了了解页岩地层中非平衡密集气流的物理学的新启示。

The non-equilibrium transport of inhomogeneous and dense gases highly confined by surface is encountered in many engineering applications. For example, in the shale gas production process, methane is extracted from ultra-tight pores under high pressure so the gas is inhomogeneous and dense. Currently, the complex non-equilibrium transport of inhomogeneous and dense gases where gas surface interactions play a key role is commonly investigated by molecular dynamics or on a continuum-assumption basis. Here, a tractable kinetic model based on the generalized Enskog equation and the mean-field theory is employed to couple the effects of the volume exclusion and the long-range intermolecular attraction forces. The interactions between gas molecules and confined surface are modelled by a 10-4-3 Lennard-Jones potential, which can capture gas surface adsorption. The cross-sectional density profiles of methane under different confinements are in good agreement with the molecular dynamics results reported in the literature, and the transport behaviors are validated by the non-equilibrium molecular dynamics. The velocity of methane flow in shale matrix is plug-like due to its dense characteristics in nanopores. The influence of pressure, temperature, pore size and shale composition on density and velocity profiles is analyzed quantitatively. Our results show that the Klinkenberg correction is not applicable to model shale gas flow in the production process; the Navier-Stokes model using the second-order slip boundary condition cannot produce the proper velocity profiles, and consequently fails to predict the accurate flow rate in nanopores. This study sheds new light on understanding the physics of non-equilibrium dense gas flows in shale strata.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源