论文标题

Minkowski Space中的整个空间式高空曲面,$σ_{N-1} $曲率

Entire spacelike hypersurfaces with constant $σ_{n-1}$ curvature in Minkowski space

论文作者

Ren, Changyu, Wang, Zhizhang, Xiao, Ling

论文摘要

我们证明,在Minkowski Space中,如果空间般的$(N-1)$ - 凸出hypersurface $ m $,带有常数$σ_{n-1} $曲率具有有限的主曲线,则$ m $ is isvex。此外,如果$ m $不是严格凸出的,则在$ \ mathbb {r}^{n,1} $刚性动作后,$ m $将作为产品$ m^{n-1} \ times \ times \ times \ mathbb {r}。有限的主曲线。

We prove that, in Minkowski space, if a spacelike, $(n-1)$-convex hypersurface $M$ with constant $σ_{n-1}$ curvature has bounded principal curvatures, then $M$ is convex. Moreover, if $M$ is not strictly convex, after an $\mathbb{R}^{n,1}$ rigid motion, $M$ splits as a product $M^{n-1}\times\mathbb{R}.$ We also construct nontrivial examples of strictly convex, spacelike hypersurface $M$ with constant $σ_{n-1}$ curvature and bounded principal curvatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源