论文标题

项目上升:认识工业烟气排放

Project RISE: Recognizing Industrial Smoke Emissions

论文作者

Hsu, Yen-Chia, Huang, Ting-Hao 'Kenneth', Hu, Ting-Yao, Dille, Paul, Prendi, Sean, Hoffman, Ryan, Tsuhlares, Anastasia, Pachuta, Jessica, Sargent, Randy, Nourbakhsh, Illah

论文摘要

工业烟雾排放引起了人类健康的重大关注。先前的工作表明,使用计算机视觉(CV)技术将烟雾识别为视觉证据可以影响监管机构的态度,并使公民有权追求环境正义。但是,现有的数据集质量不足,也没有数量来培训支持空气质量倡导所需的强大简历模型。我们引入了Rise,这是第一个大型视频数据集,用于识别工业烟气排放。我们采用了一种公民科学方法与当地社区成员合作,以注释视频剪辑是否有烟气排放。我们的数据集包含来自监视三个工业设施的相机的19个不同观点的12,567个剪辑。这些白天的剪辑在两年中占30天,包括所有四个季节。我们使用深层神经网络进行了实验,以建立强大的性能基线并揭示烟雾识别挑战。我们的调查研究讨论了社区反馈,我们的数据分析展示了将公民科学家和人群工人整合到人工智能以实现社会影响的机会。

Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for Social Impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源