论文标题
重新归一化的组和散射 - 等效的哈密顿量在粗糙的动量网格上
Renormalization group and scattering-equivalent Hamiltonians on a coarse momentum grid
论文作者
论文摘要
我们认为在Kadyshevsky方程式的上下文中,我们考虑了$ππ$散布的问题。在此方案中,我们引入了动量网格,并根据Chebyshev角的光谱移动提供了相班次的同一光谱定义。我们解决了拟合相互作用中存在的不自然高动量尾巴的问题,该尾部的最大质量中心能量范围$ \ sqrt {s} = 1.4 $ GEV。事实证明,这些尾巴可以通过使用SRG的块对角发电机来集成。
We consider the $ππ$-scattering problem in the context of the Kadyshevsky equation. In this scheme, we introduce a momentum grid and provide an isospectral definition of the phase-shift based on the spectral shift of a Chebyshev angle. We address the problem of the unnatural high momentum tails present in the fitted interactions which reaches energies far beyond the maximal center-of-mass energy of $\sqrt{s}=1.4$ GeV. It turns out that these tails can be integrated out by using a block-diagonal generator of the SRG.