论文标题

一项基于补丁的合成的调查:GPU实施和优化

A Survey on Patch-based Synthesis: GPU Implementation and Optimization

论文作者

Khojasteh, Hadi Abdi

论文摘要

本论文调查了基于斑块的合成和算法的研究,以查找图像小地方区域之间的对应关系。我们还探索了这种新快速随机匹配技术的大量应用。我们特别研究的算法之一是patch match,可以比以前的技术更快地找到一到两个数量级的图像的相似区域或“斑块”。算法程序是通过在自然图像中应用最近邻居的数学特性来驱动的。可以观察到相邻的对应关系往往是相似或“相干”,并在算法中使用此观察结果,以便快速收敛到近似解决方案。该算法是最通用的形式可以使用任意描述符和两个或多个图像之间的翻译,旋转或缩放的补丁来找到k-near的邻居匹配。在超过这些区域范围内的各种技术中获得了加速。我们已经探索了匹配算法的许多应用程序。在计算机图形学中,我们探索了从图像中删除不需要的对象,图像中无缝移动对象,更改图像宽高比和视频摘要。在计算机视觉中,我们探索了图像,对象检测,检测图像伪造和检测对称性。我们通过讨论算法计划,GPU实施和未来分析领域的限制来结束。

This thesis surveys the research in patch-based synthesis and algorithms for finding correspondences between small local regions of images. We additionally explore a large kind of applications of this new fast randomized matching technique. One of the algorithms we have studied in particular is PatchMatch, can find similar regions or "patches" of an image one to two orders of magnitude faster than previous techniques. The algorithmic program is driven by applying mathematical properties of nearest neighbors in natural images. It is observed that neighboring correspondences tend to be similar or "coherent" and use this observation in algorithm in order to quickly converge to an approximate solution. The algorithm is the most general form can find k-nearest neighbor matching, using patches that translate, rotate, or scale, using arbitrary descriptors, and between two or more images. Speed-ups are obtained over various techniques in an exceeding range of those areas. We have explored many applications of PatchMatch matching algorithm. In computer graphics, we have explored removing unwanted objects from images, seamlessly moving objects in images, changing image aspect ratios, and video summarization. In computer vision we have explored denoising images, object detection, detecting image forgeries, and detecting symmetries. We conclude by discussing the restrictions of our algorithmic program, GPU implementation and areas for future analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源